Publication

Semiconductor Materials and Devices Lab

Paper

  • 2023
  • Neuromorphic computing based on halide perovskites
  • Nature Electronics, 6, 949–962 (2023)
  • Maria Vasilopoulou*, Abd Rashid bin Mohd Yusoff*, Yang Chai, Michael-Alexandros Kourtis, Toshinori Matsushima, Nicola Gasparini, Rose Du, Feng Gao, Mohammad Khaja Nazeeruddin, Thomas D Anthopoulos*, Yong-Young Noh*
Understanding, Optimizing, and Utilizing Nonideal Transistors Based on Organic or Organic Hybrid Semiconductors
저자
Tengzhou Yang, Qian Wu, Fuhua Dai, Kairong Huang, Huihua Xu, Chenning Liu, Changdong Chen, Sujuan Hu, Xiaoci Liang, Xuying Liu, Yong‐Young Noh, Chuan Liu*
저널명
Advanced Functional Materials, 30, 20, 1903889 (2020)
년도
2020

[Abstract]

Many advanced materials have been developed for organic field-effect transistors (OFETs) or thin-film transistors (TFTs) based on organic and organic hybrid materials. However, although many new OFETs exhibit superior characteristic parameters (such as high mobility), most of them show nonideal performances that have strongly limited progress in the design of molecules, the understanding of transport mechanisms, and the circuit applications of OFETs. In this review, the device physics of ideal and nonideal OFETs is discussed first to understand the factors that limit effective mobility in semiconducting channels, distort the potential distribution, or reduce the drift electric field. Then, recent advances in optimizing the material combinations, device structures, and fabrications of OFETs toward ideal transistors are discussed. Based on the good control of materials and interfaces, some new and novel concepts to utilize the nonideal properties of OFETs to build low-power circuits and integrated sensors are also discussed.