Publication

Semiconductor Materials and Devices Lab

Paper

  • 2023
  • Neuromorphic computing based on halide perovskites
  • Nature Electronics, 6, 949–962 (2023)
  • Maria Vasilopoulou*, Abd Rashid bin Mohd Yusoff*, Yang Chai, Michael-Alexandros Kourtis, Toshinori Matsushima, Nicola Gasparini, Rose Du, Feng Gao, Mohammad Khaja Nazeeruddin, Thomas D Anthopoulos*, Yong-Young Noh*
Synthesis and Characterization of Diketopyrrolopyrrole-Based Conjugated Polymers with Bithiophene and Biselenophene for Organic Thin Film Transistors
저자
Hee Su Kim, Eul-Yong Shin, Gyujin Park, Yong-Young Noh*, and Do-Hoon Hwang∗
저널명
Journal of Nanoscience and Nanotechnology, 19, 10, 6158-6163 (2019)
년도
2019

[Abstract]

In this study, two new thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPP)-based polymers, poly{2,5-bis(2-dodecylhexadecyl)-3,6-bis(thieno[3,2-b]thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2, 2′-bithiophene} (PTTDPP-BT) and {2,5-bis(2-dodecylhexadecyl)-3,6-bis(thieno[3,2-b]thiophen-2-yl) pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione-alt-2,2′-selenophene} (PTTDPP-BSe), which contained bithiophene (BT) and biselenophene (BSe) units, respectively, were designed and synthesized. The introduction of BT and BSe units affected the optical, electrochemical, morphological, and charge transport properties of the polymers. Experimental results revealed that the frontier molecular orbital energy levels of PTTDPP-BT were slightly higher because of the relatively strong electron donating ability of the sulfur atom and the polymer also exhibited good solubility. The maximum mobility in the case of PTTDPP-BT at 250 °C was 0.068 cm2 V−1 s−1 and that of PTTDPP-BSe was 0.029 cm2 V−1 s−1 (at 200 °C).