Publication

Semiconductor Materials and Devices Lab

Paper

  • 2023
  • Neuromorphic computing based on halide perovskites
  • Nature Electronics, 6, 949–962 (2023)
  • Maria Vasilopoulou*, Abd Rashid bin Mohd Yusoff*, Yang Chai, Michael-Alexandros Kourtis, Toshinori Matsushima, Nicola Gasparini, Rose Du, Feng Gao, Mohammad Khaja Nazeeruddin, Thomas D Anthopoulos*, Yong-Young Noh*
A Timely Synthetic Tailoring of Biaxially Extended Thienylenevinylene‐Like Polymers for Systematic Investigation on Field‐Effect Transistors
저자
Dohyuk Yoo,Benjamin Nketia-Yawson, Seok-Ju Kang,Hyungju Ahn, Tae Joo Shin,Yong-Young Noh*, Changduk Yang*
저널명
Advanced Functional Materials
년도
2015

[Abstract]

Considering there is growing interest in the superior charge transport in the (E)-2-(2-(thiophen-2-yl)-vinyl)thiophene (TVT)-based polymer family, an essential step forward is to provide a deep and comprehensive understanding of the structure–property relationships with their polymer analogs. Herein, a carefully chosen set of DPP-TVT-n polymers are reported here, involving TVT and diketopyrrolopyrrole (DPP) units that are constructed in combination with varying thiophene content in the repeat units, where n is the number of thiophene spacer units. Their OFET characteristics demonstrate ambipolar behavior; in particular, with DPP-TVT-0 a nearly balanced hole and electron transport are observed. Interestingly, the majority of the charge-transport properties changed from ambipolar to p-type dominant, together with the enhanced hole mobilities, as the electron-donating thiophene spacers are introduced. Although both the lamellar d-spacings and π-stacking distances of DPP-TVT-n decreased with as the number of thiophene spacers increased, DPP-TVT-1 clearly shows the highest hole mobility (up to 2.96 cm2 V−1 s−1) owing to the unique structural conformations derived from its smaller paracrystalline distortion parameter and narrower plane distribution relative to the others. These in-depth studies should uncover the underlying structure–property relationships in a relevant class of TVT-like semiconductors, shedding light on the future design of top-performing semiconducting polymers.