Publication

Semiconductor Materials and Devices Lab

Paper

  • 2023
  • Neuromorphic computing based on halide perovskites
  • Nature Electronics, 6, 949–962 (2023)
  • Maria Vasilopoulou*, Abd Rashid bin Mohd Yusoff*, Yang Chai, Michael-Alexandros Kourtis, Toshinori Matsushima, Nicola Gasparini, Rose Du, Feng Gao, Mohammad Khaja Nazeeruddin, Thomas D Anthopoulos*, Yong-Young Noh*
Downscaling of n-channel organic field-effect transistors with inkjet-printed electrodes
저자
Xiaoyang Cheng, Mario Caironi, Yong-Young Noh, Christopher Newmand, Jianpu Wang, Mi Jung Lee, Kal Banger, Riccardo Di Pietro, Antonio Facchetti* and Henning Sirringhaus*
저널명
Organic Electronics, 13, 2, 320-328 (2012)
년도
2012

[Abstract]

In this contribution we demonstrate for the first time a downscaled n-channel organic field-effect transistors based on N,N′-dialkylsubstituted-(1,7&1,6)-dicyanoperylene-3,4:9,10-bis(dicarboximide) with inkjet printed electrodes. First we demonstrate that the use of a high boiling point solvent is critical to achieve extended crystalline domains in spin-coated thin films and thus high electron mobility >0.1 cm2 V−1 s−1 in top-gate devices. Then inkjet-printing is employed to realize sub-micrometer scale channels by dewetting of silver nanoparticles off a first patterned gold contact. By employing a 50 nm crosslinked fluoropolymer gate dielectric, ∼200 nm long channel transistors can achieve good current saturation when operated <5 V with good bias stress stability.